Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 406
1.
Anal Bioanal Chem ; 416(11): 2819-2833, 2024 May.
Article En | MEDLINE | ID: mdl-38244050

The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC)2-Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC)2-Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.


Gold , Tandem Mass Spectrometry , Gold/chemistry , Auranofin , Spectrometry, Mass, Electrospray Ionization , Gold Compounds/chemistry , Electrophoresis, Capillary , Immunologic Factors , Chromatography, Liquid , Thioredoxins
2.
Chempluschem ; 89(2): e202300321, 2024 02.
Article En | MEDLINE | ID: mdl-37930642

Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.


Cathepsin B , Gold Compounds , Gold Compounds/chemistry , Gold Compounds/pharmacology , Cathepsin B/chemistry , Cysteine/chemistry , Spectrometry, Mass, Electrospray Ionization , Proteins/chemistry
3.
Angew Chem Int Ed Engl ; 62(22): e202218000, 2023 05 22.
Article En | MEDLINE | ID: mdl-36847211

The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.


Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Gold/chemistry , Nanomedicine , Pharmaceutical Preparations , Drug Delivery Systems , Gold Compounds/chemistry , Neoplasms/drug therapy
4.
ACS Appl Mater Interfaces ; 14(9): 11587-11596, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35174700

Precise detection of breath isoprene can provide valuable information for monitoring the physical and physiological status of human beings or for the early diagnosis of cardiovascular diseases. However, the extremely low concentration and low chemical reactivity of breath isoprene hamper the selective and sensitive detection of isoprene using oxide semiconductor chemiresistors. Herein, we report that macroporous WO3 microspheres whose inner macropores are surrounded by Au nanoparticles exhibit a high response (resistance ratio = 11.3) to 0.1 ppm isoprene under highly humid conditions at 275 °C and an extremely low detection limit (0.2 ppb). Furthermore, the sensor showed excellent selectivity to isoprene over five interferants that could be exhaled by humans. Notably, the selectivity to isoprene is critically dependent on the location of Au nanocatalysts and macroporosity. The mechanism underlying the selective isoprene detection is investigated in relation to the reforming of less reactive isoprene into more reactive intermediate species promoted by macroporous catalytic reactors, which is confirmed by the analysis using a proton transfer reaction quadrupole mass spectrometer. The sensor for breath analysis has high potential for simple physical and physiological monitoring as well as disease diagnosis.


Breath Tests/methods , Butadienes/analysis , Gold Compounds/chemistry , Hemiterpenes/analysis , Metal Nanoparticles/chemistry , Oxides/chemistry , Tungsten/chemistry , Catalysis , Humans , Mass Spectrometry/methods , Microspheres , Sensitivity and Specificity , Temperature
5.
J Am Chem Soc ; 143(39): 16113-16127, 2021 10 06.
Article En | MEDLINE | ID: mdl-34582167

Integrating multifunctional nanostructures capable of radiotherapy and photothermal ablation is an emerging alternative in killing cancer cells. In this work, we report a novel plasmonic heterostructure formed by decorating AuPt nanoparticles (NPs) onto the surfaces of CuS nanosheets (AuPt@CuS NSs) as a highly effective nanotheranostic toward dual-modal photoacoustic/computed tomography imaging and enhanced synergistic radiophotothermal therapy. These heterostructures can confer higher photothermal conversion efficiency via the local electromagnetic enhancement as well as a greater radiation dose deposition in the form of glutathione depletion and reactive oxygen species generation. As a result, the depth of tissue penetration is improved, and hypoxia of the tumor microenvironment is alleviated. With synergistic enhancement in the efficacy of photothermal ablation and radiotherapy, the tumor can be eliminated without later recurrence. It is believed that these multifunctional heterostructures will play a vital role in future oncotherapy with the enhanced synergistic effects of radiotherapy and photothermal ablation under the guided imaging of a potential dual-modality system.


Copper/pharmacology , Gold Compounds/pharmacology , Photothermal Therapy , Platinum Compounds/pharmacology , Radiopharmaceuticals/pharmacology , Animals , Cell Line, Tumor , Copper/chemistry , Female , Gold Compounds/chemistry , Mammary Neoplasms, Animal , Mice , Mice, Inbred BALB C , Neoplasms, Experimental , Platinum Compounds/chemistry , Radiopharmaceuticals/chemistry , Random Allocation
6.
Mikrochim Acta ; 188(8): 282, 2021 08 02.
Article En | MEDLINE | ID: mdl-34341880

A colorimetric and fluorescent dual-channel detection method for acid phosphatase (ACP) activity has been constructed, based on the internal filtering effect between oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) and rhodamine B (RB). Au3+, which in situ form gold nanoparticles (AuNPs), can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to oxTMB (blue color). The fluorescence of RB can be quenched by oxTMB due to the spectral overlap of emission of RB and absorption of oxTMB. By means of the above process, ACP can be determined because ACP promotes the hydrolysis of 2-phospho-L-ascorbic acid trisodium salt (AAP) to generate ascorbic acid (AA), which can inhibit the internal filtering effect between RB and oxTMB. No material preparation was needed for the determination of ACP. The colorimetric and fluorimetric methods can quantify ACP in the range 0.06-5.0 mU/mL and 0.03-5.0 mU/mL, respectively. Furthermore, a smartphone-assisted sensing platform has been constructed for on-site monitoring of ACP in the range 0.75-50 mU/mL, and the detection limit is 0.3 mU/mL. The methods developed can measure ACP in human serum successfully.


Acid Phosphatase/blood , Colorimetry/methods , Spectrometry, Fluorescence/methods , Acid Phosphatase/chemistry , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/chemistry , Benzidines/chemistry , Chlorides/chemistry , Chromogenic Compounds/chemistry , Colorimetry/instrumentation , Fluorescent Dyes/chemistry , Gold Compounds/chemistry , Humans , Limit of Detection , Oxidation-Reduction , Rhodamines/chemistry , Smartphone , Spectrometry, Fluorescence/instrumentation
7.
J Mater Chem B ; 9(32): 6396-6405, 2021 08 28.
Article En | MEDLINE | ID: mdl-34313290

Exploring and developing a new type of nanoplatform with diagnosis and treatment to effectively cure tumors and reduce side effects has become a hot spot for researchers and is of great significance. Herein, a cancer theranostic nanoplatform with dual-imaging, dual-phototherapy and laser-responsiveness to tumor microenvironment was successfully assembled by liposome (Lip) co-loaded with oil-soluble Au4Cu4 nanoclusters (NCs) and water-soluble Au25 NCs via a simple film hydration method and subsequent extraction process. The prepared Au4Cu4/Au25@Lip nanoplatform with core-shell structure and about 50 nm of uniform sphere shape presented highly biocompatible, stability and passive targeting due to the enhanced permeability and retention (EPR) effect. Furthermore, the Lip composed of lecithin and cholesterol has good affinity with the cell membrane, which can realize the effective accumulation of photosensitizers at the tumor site, so that improving phototherapy effect and reducing the damage to normal tissue. The loaded oil-soluble Au4Cu4 NCs were firstly and pleasantly surprised to find possessed not only ideal photodynamic effect, but also preferable catalysis towards endogenous hydrogen peroxide (H2O2) decomposition to produce oxygen (O2) for improving the tumor hypoxic environment besides the excellent photoluminescence ability while the water-soluble Au25 NCs own outstanding photothermogenesis effect and also photoluminescence performance. The in vitro and in vivo experiment results proved that in the Au4Cu4/Au25@Lip nanoplatform, the performances of both NCs were complementary, which presenting considerable photothermal/fluorescence imaging (PTI/FI)-guided synergistic photothermal therapy (PTT)/O2-enhanced photodynamic therapy (PDT) effect for the tumor under the irradiation of near infrared (NIR) laser. This work provides a useful inspiration and paves a new way for the assembly of NCs or namomaterials with different properties into an integrated anti-tumor theranostic nanoplatform.


Gold Compounds/pharmacology , Metal Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Theranostic Nanomedicine , Cell Survival/drug effects , Gold Compounds/chemistry , HeLa Cells , Humans , Oxygen , Photochemotherapy , Photosensitizing Agents/chemistry , Phototherapy , Reactive Oxygen Species , Tumor Microenvironment
8.
Mikrochim Acta ; 188(5): 175, 2021 04 24.
Article En | MEDLINE | ID: mdl-33893886

Bisphenol A (BPA), as a typical endocrine disruptor, poses a serious threat to human health. Therefore, it is urgent to establish a rapid, sensitive, and simple method for the determination of BPA. In this paper, based on the aptamer-mediated single-atom Fe carbon dot catalyst (SAFe) catalyzing the HAuCl4-ethylene glycol (EG) nanoreaction, a new SERS/RRS di-mode detection method for BPA was established. The results show that SAFe exhibits a strong catalytic effect on the HAuCl4-EG nanoreaction, which could generate purple gold nanoparticles (AuNPs) with resonance Rayleigh scattering (RRS) signals and surface-enhanced Raman scattering (SERS) effects. After the addition of BPA aptamer (Apt), it could encapsulate SAFe through intermolecular interaction, thus inhibiting its catalytic action, resulting in the reduction of AuNPs generated and the decrease of RRS and SERS signals of the system. With the addition of BPA, Apt was specifically combined with BPA, and SAFe was re-released to restore the catalytic ability; the generated AuNPs increased. As a result of this RRS and SERS signals of the system recovered, and their increment was linear with the concentration of BPA. Thus, the quantification of 0.1-4.0 nM (RRS) and 0.1-12.0 nM (SERS) BPA was realized, and the detection limits were 0.08 nM and 0.03 nM, respectively. At the same time, we used molecular spectroscopy and electron microscopy to study the SAFe-HAuCl4-ethylene glycol indicator reaction, and proposed a reasonable SAFe catalytic reaction mechanism. Based on Apt-mediated SAFe catalysis gold nanoreaction amplification, a SERS/RRS di-mode analytical platform was established for targets such as BPA.


Aptamers, Nucleotide/chemistry , Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Environmental Pollutants/analysis , Metal Nanoparticles/chemistry , Phenols/analysis , Quantum Dots/chemistry , Benzhydryl Compounds/chemistry , Carbon/chemistry , Catalysis , Chlorides/chemistry , Endocrine Disruptors/chemistry , Environmental Pollutants/chemistry , Ethylene Glycol/chemistry , Gold/chemistry , Gold Compounds/chemistry , Iron/chemistry , Limit of Detection , Phenols/chemistry , Plastics/analysis , Reproducibility of Results , Spectrum Analysis, Raman/methods
9.
Mikrochim Acta ; 188(4): 122, 2021 03 10.
Article En | MEDLINE | ID: mdl-33694068

A colorimetric sensing method is described for discrimination of multiple antioxidants based on core-shell Au@Ag nanocubes (NCs). In order to extract data-rich colorimetric responses from the sensor array, three different concentrations of chloroaurate acid (HAuCl4) were employed as sensing elements. Interestingly, Au3+ ions can be reduced to different valence states (i.e., Au(0) and Au(I)) by different antioxidants, and thus effectively inhibit the oxidation etching process of Au@Ag NCs by Au(III) ions to varying extents, generating diverse colorimetric responses (color and absorbance). This enables identification of the six antioxidants at 10 nM via linear discriminant analysis (LDA) with relative standard deviation (RSD) of 2.52% (n = 3). The discrimination ability of the sensor array was further evaluated in antioxidant binary and multicomponent mixtures. Remarkably, identification of these six antioxidants spiked in urine was realized with 100% of accuracy. Schematic presentation of colorimetric assay for antioxidants based on three chloroauric acid/Au-Ag nanocubes.


Antioxidants/analysis , Chlorides/chemistry , Colorimetry/methods , Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Humans , Limit of Detection , Urine/chemistry
10.
Yakugaku Zasshi ; 141(3): 305-314, 2021.
Article Ja | MEDLINE | ID: mdl-33642496

The interaction between transition metals and ligands is important for catalytic reactions. The ligands are largely dominated by the covalent X-type (hydride, alkyl and halogen) and/or dative L-type ligands (e.g., P, N, CO, olefin, etc.). Therefore, the interaction of the Z-type ligands (B, Al and Si, etc.) with transition metals is emerging as a new concept for the reactivity of the metal center. Recently, we developed the synthesis of the gold complex Au(DPB)X (DPB=diphosphine-borane) featuring the Z-type ligand, and their catalytic reaction. The gold catalysts showed a high activity compared to the general catalysts (without Z-ligand) for the various cyclization reactions due to the electron-withdrawing effect of the Z-ligand on the coordinating gold center. In this review, first the structure analysis of the synthesized Au→Z complex is introduced in detail, and second, the catalytic reactions based on the alkyne activation are described.


Electrons , Gold Compounds/chemical synthesis , Gold/chemistry , Ligands , Alkynes/chemistry , Catalysis , Cyclization , Gold Compounds/chemistry , Molecular Structure
11.
Bioprocess Biosyst Eng ; 44(8): 1617-1626, 2021 Aug.
Article En | MEDLINE | ID: mdl-33704554

Multidrug-resistant (MDR) pathogenic bacteria have become dangerous in bringing sporadic outbreaks in public health and nosocomial spreads from the addition of antibacterials/antibiotics continually. Obviously, the pharmacy world is in search of antibacterials that would be invincible by the evolved bacteria. Green synthesis of gold-nanoparticles (AuNps) was focused on the use of aqueous chloroauric acid (HAuCl4) and cell-free aqueous extract of the N2-fixing cyanobacterium (blue-green alga) Anabaena spiroides collected from a brackish-water, Bay of Bengal at Puri, Odisha; green-synthesized AuNps could be used as antibacterials against MDR bacteria. The synthesized AuNps were subjected to the following characterizations, UV-Vis spectrophotometry, SEM-EDX, XRD and ART-FTIR analysis. An absorption peak at 538 nm by UV-Vis spectrophotometry and the FTIR analysis confirmed the presence of AuNps. A. spiroides-AuNps were monitored for antibacterial activities against MDR pathogenic bacterial strains isolated from clinical samples, namely, Klebsiella oxytoca, MRSA and Streptococcus pyogenes, in vitro; the individual antibiograms of those bacteria were known. The recorded MIC dose values were 25, 20 and 30 mg A. spiroides-AuNps (As-AuNps) against K. oxytoca, MRSA and S. pyogenes, in vitro, respectively. Thus, As-AuNps bear promises as possible antibacterials, in future.


Anti-Infective Agents/pharmacology , Cyanobacteria/metabolism , Drug Resistance, Multiple , Gold/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents , Biomass , Chlorides/chemistry , Enterococcus faecalis , Gold Compounds/chemistry , Klebsiella oxytoca , Methicillin-Resistant Staphylococcus aureus , Microscopy, Electron, Scanning , RNA, Ribosomal, 16S/metabolism , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Streptococcus pyogenes , X-Ray Diffraction
12.
Methods Mol Biol ; 2217: 183-195, 2021.
Article En | MEDLINE | ID: mdl-33215382

Surface nanopatterning allows for the creation of spatially controlled binding sites for extracellular matrix ligands and the modulation of receptor binding sites. Here we describe the preparation of gold nanopatterned substrates using diblock micellar nanolithography to immobilize integrin ligands at defined spacing and combined with molecular tension sensors to measure molecular forces as function of integrin lateral clustering.


Extracellular Matrix/metabolism , Fibroblasts/metabolism , Focal Adhesions/metabolism , Integrins/chemistry , Oligodeoxyribonucleotides/chemistry , Stereolithography , Animals , Binding Sites , Cell Adhesion , Cell Movement , Chlorides/chemistry , Extracellular Matrix/ultrastructure , Fibroblasts/ultrastructure , Fibronectins/chemistry , Fibronectins/metabolism , Focal Adhesions/ultrastructure , Gold Compounds/chemistry , Integrins/metabolism , Ligands , Mice , Micelles , Microscopy, Fluorescence/methods , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Polymerization , Protein Binding , Pyridines/chemistry , Surface Properties
13.
Int J Biol Macromol ; 171: 198-207, 2021 Feb 28.
Article En | MEDLINE | ID: mdl-33310102

Chitosan is a linear polysaccharide and non-toxic bioactive polymer with a wide variety of applications due to its functional properties such as ease of modification, and biodegradability. In this investigation, magnetic cores (Fe3O4) were synthesized using a fabrication method involving coprecipitation of Fe2+ and Fe3+. Then the magnetic nanoparticles were encapsulated by chitosan layers. In the next step, magnetite-gold composite nanoparticles were synthesized with spherical shapes and sizes ranging from 20 to 30 nm, using sodium citrate as a natural reducing agent. The morphological and physicochemical features of the material were determined using several advanced techniques like FT-IR, ICP analysis, FESEM, EDS, XRD, TEM, XPS and VSM. In the biological part of the present study, the cell viability of Fe3O4, HAuCl4, and Fe3O4@CS/AuNPs was very low against human colorectal carcinoma cell lines i.e. Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29, human gastric cancer cell lines i.e. MKN45, AGS, and KATO III, and human pancreatic cancer cell lines i.e. PANC-1, AsPC-1, and MIA PaCa-2. The IC50 of Fe3O4@CS/AuNPs against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, HT-29, MKN45, AGS, KATO III, PANC-1, AsPC-1, and MIA PaCa-2 cell lines were 385, 429, 264, 286, 442, 498, 561, 513, 528, and 425 µg/mL, respectively. Thereby, the best cytotoxicity results of our Fe3O4@CS/AuNPs were observed in the case of the HCT 116 cell line. Seemingly, the present nanoparticles may be used for the treatment of several types of gastro-duodenal cancers especially colon, gastric, and pancreatic cancers in near future.


Antineoplastic Agents/chemistry , Chitosan/chemistry , Chlorides/chemistry , Ferrosoferric Oxide/chemistry , Gold Compounds/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Compounding/methods , HCT116 Cells , HT29 Cells , Humans , Magnetite Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Propylamines/chemistry , Silanes/chemistry
14.
Anal Chem ; 93(3): 1529-1536, 2021 01 26.
Article En | MEDLINE | ID: mdl-33382590

Gold(I) compounds are known to bind sulfur-containing proteins, forming the basis in the design of gold(I)-based drugs. However, the intrinsic molecular mechanism of the chemical reaction is easily hidden when monitored in ensemble. We have previously demonstrated that Mycobacterium smegmatis porin A (MspA) can be engineered (MspA-M) to contain a specialized nanoreactor to probe chemical reactions involving tetrachloroaurate(III). Here, we provide further investigations of coordination interactions between dichloroaurate(I) and MspA-M. Gold compounds of different coordination geometry and valence states are as well probed and evaluated, demonstrating the generality of MspA-M. With single-molecule evidence, MspA-M demonstrates a preference for dichloroaurate(I) than tetrachloroaurate(III), an observation in a single molecule that has never been reported. By counting the maximum number of simultaneous ion bindings, the narrowly confined pore restriction also efficiently distinguishes dichloroaurate(I) and tetrachloroaurate(III) according to their differences in geometry or size. The above demonstration complemented a previous study by demonstrating other possible gold-based single-molecule chemical reactions observable by MspA. These observations bring insights in the understanding of gold-based coordination chemistry in a nanoscale.


Chlorides/chemistry , Gold Compounds/chemistry , Mycobacterium smegmatis/chemistry , Nanopores , Porins/chemistry , Protein Engineering , Binding Sites , Gold/chemistry
15.
Eur J Pharm Biopharm ; 157: 221-232, 2020 Dec.
Article En | MEDLINE | ID: mdl-33130338

Gold nanoparticle (AuNP)-based systems have been extensively investigated as diagnostic and therapeutic agents due to their tunable properties and easy surface functionalization. Upon cell uptake, AuNPs present an inherent cell impairment potential based on organelle and macromolecules damage, leading to cell death. Such cytotoxicity is concentration-dependent and completely undesirable, especially if unspecific. However, under non-cytotoxic concentrations, internalized AuNPs could potentially weaken cells and act as antitumor agents. Therefore, this study aimed to investigate the antitumor effect of ultrasmall AuNPs (~3 nm) stabilized by the anionic polysaccharide gum arabic (GA-AuNPs). Other than intrinsic cytotoxicity, the focus was downregulation of cancer hallmarks of aggressive tumors, using a highly metastatic model of melanoma. We first demonstrated that GA-AuNPs showed excellent stability under biological environment. Non-cytotoxic concentrations to seven different cell lines, including tumorigenic and non-tumorigenic cells, were determined by standard 2D in vitro assays. Gold concentrations ≤ 2.4 mg L-1 (16.5 nM AuNPs) were non-cytotoxic and therefore chosen for further analyses. Cells exposed to GA-AuNPs were uptaken by melanoma cells through endocytic processes. Next we described remarkable biological properties using non-cytotoxic concentrations of this nanomaterial. Invasion through an extracellular matrix barrier as well as 3D growth capacity (anchorage-independent colony formation and spheroids growth) were negatively affected by 2.4 mg L-1 GA-AuNPs. Additionally, exposed spheroids showed morphological changes, suggesting that GA-AuNPs could penetrate into the preformed tumor and affect its integrity. All together these results demonstrate that side effects, such as cytotoxicity, can be avoided by choosing the right concentration, nevertheless, preserving desirable effects such as modulation of key tumor cell malignancy features.


Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Gold Compounds/pharmacology , Melanoma, Experimental/drug therapy , Metal Nanoparticles , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Stability , Endocytosis , Gold Compounds/chemistry , Gold Compounds/metabolism , Gold Compounds/toxicity , Gum Arabic/chemistry , Humans , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Nanomedicine , Neoplasm Invasiveness , Neoplasm Metastasis , Particle Size , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
16.
Biosci Rep ; 40(11)2020 11 27.
Article En | MEDLINE | ID: mdl-33165619

BACKGROUND: Over the past few years, fabrication of nanoparticles (NPs) has been deployed widely in technologies and many concerns have emerged about the hazardous effect on human health after NPs exposure. OBJECTIVE: Green synthesis of gold NPs (AuNPs) and assessment of their activity in 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mouse model. METHODS: Chloroauric acid (HAuCl4) was used in formation of AuNPs with the help of Curcuma longa as aqueous reducing extract and stabilizing agent at room temperature. Formed NPs were characterized with UV-Vis spectrometry, Fourier-transform infrared spectroscopy (FTIR), Zetasizer measurement, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Virgin female albino mice with DMBA-induced breast cancer were treated with formed AuNPs for 5 consecutive days and were dissected after 28 days of the beginning of treatment. RESULTS: UV-Vis spectrometry showed absorbance maximum peak at 530 nm for formed AuNPs, FTIR confirmed formation of plant extract layer around formed NPs; zetasizer measurement revealed 278.2 nm as an average size of produced NPs; SEM and TEM approved formation of monodisperse spherical AuNPs. Biochemical analysis of untreated breast cancer group revealed marked changes in liver and kidney functions manifested by raised activity levels of alanine transaminase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine. Whereas, the treated group with AuNPs post-breast cancer induction displayed reduction in the activities (of ALT, AST and creatinine), while the BUN activity level was raised. Histopathological examination showed heavy incidence of tumor foci in the breast and lymph nodes belonged to the untreated breast cancer group confirmed with intense response to Ki-67 antibodies. While the treated group with AuNPs post-breast cancer induction showed degenerated tumor foci in the breast and lymph nodes with weak response to Ki-67 antibodies. CONCLUSION: AuNPs were successfully synthesized using HAuCl4 and C. longa extract confirmed their ability to control DMBA-induced breast cancer in virgin female Swiss albino mice.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Chlorides/pharmacology , Gold Compounds/pharmacology , Green Chemistry Technology , Metal Nanoparticles , Nanomedicine , Neoplasms, Experimental/drug therapy , 9,10-Dimethyl-1,2-benzanthracene , Alanine Transaminase/blood , Animals , Antineoplastic Agents/chemistry , Aspartate Aminotransferases/blood , Blood Urea Nitrogen , Breast Neoplasms/blood , Breast Neoplasms/chemically induced , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chlorides/chemistry , Creatinine/blood , Curcuma/chemistry , Excipients/chemistry , Female , Gold Compounds/chemistry , Mice , Neoplasms, Experimental/blood , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Oxidation-Reduction , Plant Extracts/chemistry , Tumor Burden/drug effects
17.
Int J Mol Sci ; 21(19)2020 Sep 27.
Article En | MEDLINE | ID: mdl-32992497

We report the generation of gold nanoparticles (AuNPs) from the aqueous solution of chloro(2,2',2″-terpyridine)gold(III) ion ([Au(tpy)Cl]2+) through X-ray radiolysis and optical excitation at a synchrotron. The original purpose of the experiment was to investigate the photoinduced structural changes of [Au(tpy)Cl]2+ upon 400 nm excitation using time-resolved X-ray liquidography (TRXL). Initially, the TRXL data did not show any signal that would suggest structural changes of the solute molecule, but after an induction time, the TRXL data started to show sharp peaks and valleys. In the early phase, AuNPs with two types of morphology, dendrites, and spheres, were formed by the reducing action of hydrated electrons generated by the X-ray radiolysis of water, thereby allowing the detection of TRXL data due to the laser-induced lattice expansion and relaxation of AuNPs. Along with the lattice expansion, the dendritic and spherical AuNPs were transformed into smaller, raspberry-shaped AuNPs of a relatively uniform size via ablation by the optical femtosecond laser pulse used for the TRXL experiment. Density functional theory calculations confirm that the reduction potential of the metal complex relative to the hydration potential of X-ray-generated electrons determines the facile AuNP formation observed for [Au(tpy)Cl]2+.


Gold/chemistry , Metal Nanoparticles/chemistry , Solutions/chemistry , Water/chemistry , X-Ray Diffraction/methods , Electrons , Gold Compounds/chemistry , Laser Therapy/methods , Lasers , Particle Size , Pulse Radiolysis/methods , Synchrotrons , X-Rays
18.
Mar Drugs ; 18(9)2020 Aug 19.
Article En | MEDLINE | ID: mdl-32825040

The effect of gold nanoparticles (GNPs) synthesized in marine algae has been described in the context of skin, where they have shown potential benefit. Ecklonia stolonifera (ES) is a brown algae that belongs to the Laminariaceae family, and is widely used as a component of food and medicine due to its biological activities. However, the role of GNPs underlying cellular senescence in the protection of Ecklonia stolonifera gold nanoparticles (ES-GNPs) against UVA irradiation is less well known. Here, we investigate the antisenescence effect of ES-GNPs and the underlying mechanism in UVA-irradiated human dermal fibroblasts (HDFs). The DPPH and ABTS radical scavenging activity of ES extracts was analyzed. These analyses showed that ES extract has potent antioxidant properties. The facile and optimum synthesis of ES-GNPs was established using UV-vis spectra. The surface morphology and crystallinity of ES-GNPs were demonstrated using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). ES-GNPs presented excellent photocatalytic activity, as shown by the photo-degradation of methylene blue and rhodamine B. A cellular senescence model was established by irradiating HDFs with UVA. UVA-irradiated HDFs exhibited increased expression of senescence-associated ß-galactosidase (SA-ß-galactosidase). However, pretreatment with ES-GNPs resulted in reduced SA-ß-galactosidase activity in UVA-irradiated HDFs. Intracellular ROS levels and G1 arrest in UVA-irradiated HDFs were checked against the background of ES-GNP treatment to investigate the antisenescence effects of ES-GNPs. The results showed that ES-GNPs significantly inhibit UVA-induced ROS levels and G1 arrest. Importantly, ES-GNPs significantly downregulated the transcription and translation of MMP (matrix metalloproteinases)-1/-3, which regulate cellular senescence in UVA-irradiated HDFs. These findings indicate that our optimal ES-GNPs exerted an antisenescence effect on UVA-irradiated HDFs by inhibiting MMP-1/-3 expression. Collectively, we posit that ES-GNPs may potentially be used to treat photoaging of the skin.


Cellular Senescence/drug effects , Fibroblasts/drug effects , Gold Compounds/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Metal Nanoparticles , Phaeophyceae/metabolism , Skin Aging/drug effects , Skin/drug effects , Cells, Cultured , Fibroblasts/enzymology , Fibroblasts/pathology , Fibroblasts/radiation effects , Gold Compounds/chemistry , Green Chemistry Technology , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/genetics , Oxidation-Reduction , Secondary Metabolism , Skin/enzymology , Skin/pathology , Skin/radiation effects , Ultraviolet Rays
19.
Amino Acids ; 52(6-7): 941-953, 2020 Jul.
Article En | MEDLINE | ID: mdl-32607864

Biomimetic synthesis of gold nanoparticles (GNPs) is critical in biomedical applications. Gold bioconjugates were fabricated by capping the water-dispersible gold-carbon nanoparticles with tyrosine, tryptophan and cysteine amino acids. Incubation of the water-soluble and easily reducible aryldiazonium gold(III) salt [HOOC-4-C6H4N≡N]AuCl4 with amino acids at room temperature formed a purple color over a few minutes with tryptophan and tyrosine and over two hours with cysteine. Rarely that cysteine is capable of reducing gold(III) precursors; however, a cysteine capped gold bioconjugate was synthesized and characterized in this study. Capping GNPs with amino acids was confirmed by high resolution transmission electron microscopy (TEM) and agarose gel electrophoresis. Depending on the amino acid, synthesized particles size was 27.2 ± 5.4 nm, 14.6 ± 7.7 nm and 8.6 ± 2.6 nm for tyrosine, tryptophan and cysteine, respectively. The amino acids capped GNPs showed negligible cytotoxicity to human dermal normal fibroblast cell lines. The highly water dispersible bioconjugates were studied for in vitro cellular uptake by HeLa cancer cells using confocal laser scan microscopy (CLSM) after being labelled with FITC (GNPs-COOH-FITC) and the nuclei were counter stained with DAPI fluorescent dyes. The biomimetic route for the synthesis of the amino acids reduced gold-carbon nanoparticles will benefit the applications in biomedical devices and biosensors.


Amino Acids/chemistry , Amino Acids/chemical synthesis , Chlorides/chemistry , Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Chlorides/chemical synthesis , Cysteine/chemistry , Electrophoresis, Agar Gel , Gold Compounds/chemical synthesis , HeLa Cells , Humans , Tryptophan/chemistry , Tyrosine/chemistry
20.
Int J Nanomedicine ; 15: 2605-2615, 2020.
Article En | MEDLINE | ID: mdl-32368043

OBJECTIVE: This paper introduces a simple one-step and ultra-fast method for synthesis of highly photothermally active polypyrrole-coated gold nanoparticles. The synthesis process is so simple that the reaction is very fast without the need for any additives or complicated steps. METHODOLOGY: Polypyrrole-coated gold nanoparticles (AuPpy NPs) were synthesized by reacting chloroauric acid (HAuCl4) with pyrrole (monomer) in aqueous medium at room temperature. These nanoparticles were characterized by UV-visible-NIR spectrometry, transmission electron microscopy (TEM), AC conductivity, zeta sizer and were evaluated for dark cytotoxicity and photocytotoxicity using human hepatocellular carcinoma (HepG2) cell line as a model for cancer cells. RESULTS: The synthesized AuPpy NPs showed a peak characteristic for gold nanoparticles (530-600 nm, molar ratio dependent) and a wide absorption band along the visible-NIR region with intensity about triple or even quadruple that of polypyrrole synthesized by the conventional FeCl3 method at the same concentration and under the same conditions. TEM imaging showed that the synthesized AuPpy NPs were composed of spherical or semi-spherical gold core(s) of about 4-10 nm coated with distinct layer(s) of polypyrrole seen either loosely or in clusters. Mean sizes of the synthesized nanoparticles range between ~25 and 220 nm (molar ratio dependent). Zeta potentials of the AuPpy NPs preparations indicate their good colloidal stability. AC conductivity values of AuPpy NPs highly surpass that of Ppy prepared by the conventional FeCl3 method. AuPpy NPs were non-toxic even at high concentrations (up to 1000 µM pyrrole monomer equivalent) under dark conditions. Unlikely, light activated the photothermal activity of AuPpy NPs in a dose-dependent manner. CONCLUSION: This method simply and successfully synthesized AuPpy NPs nanoparticles that represent a safe alternative photothermally active multifunctional tool instead of highly toxic and non-biodegradable gold nanorods.


Coated Materials, Biocompatible/chemistry , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Polymers/chemistry , Pyrroles/chemistry , Temperature , Cell Death , Chlorides/chemistry , Electric Conductivity , Gold Compounds/chemistry , Hep G2 Cells , Humans , Metal Nanoparticles/ultrastructure , Particle Size , Polymers/chemical synthesis , Pyrroles/chemical synthesis , Spectrophotometry, Ultraviolet , Static Electricity
...